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Motivation

Stochastic
rounding (SR)

Applications Error analysis

Stagnation: deep
learning, PDEs

Climate simulation:
Lorenz system Unbiased bounds in O(

√
n)

instead of O(n)
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Stochastic rounding

TxU VxW

x1 − q(x)
q(x)

R
Fp

Figure. SRp with q(x) = x−TxU
VxW−TxU

SRp(x) = x(1 + δ) such that |δ| ⩽ up

E (SRp(x)) = q(x)VxW + (1 − q(x))TxU = x , then E(δ) = 0
SR satisfies the mean independence property

E(δk | δ1, . . . , δk−1) = E(δk) = 0
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How can we implement this in hardware?
Example
Let a, b ∈ Fp, if we compute a + b in Fq such that q > p, it suffices to take
r = q − p.

q

m(a + b)

rp+
rand

=
SR(m(a + b))

r
rand

non-random bits
random bits
zero bits

Expensive!!

A Stochastic Rounding-Enabled Low-Precision
Floating-Point MAC for DNN Training
"Ali, Sami Ben and Filip, Silviu-Ioan and Sen-
tieys, Olivier"
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Limited-precision stochastic rounding

Main goal
How the behavior of SRp changes when an infinitely precise x is not available?

TxU VxW

x

flp+r (x)

1 − qr (x)
qr (x)

Fp Fp+r

Figure. SRp,r with qr (x) = flp+r (x)−TxU
VxW−TxU

flp+r (x) = x(1 + β) such that |β| ⩽ up+r ̸= SRp,r (x) = x(1 + δ)
E (SRp,r (x)) = qr (x)VxW + (1 − qr (x))TxU = flp+r (x)
The mean independence is lost

E(δk | δ1, . . . , δk−1) = βk ̸= E(δk)

βk is a random variable and E(βk) = E(δk)
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Main result

Lemma 1.
Let δ1, δ2, . . . , δn be random errors produced by a sequence of elementary
operations using SRp,r , and let β1, β2, . . . , βn be their corresponding errors
incurred by flp+r . Then, the random variables αk = δk − βk for 1 ⩽ k ⩽ n are
mean independent

E(αk | α1, . . . , αk−1) = E(αk) = 0.

Moreover, for all 1 ⩽ i ⩽ n,
n∏

k=i
(1 + δk) =

n∏
k=i

(1 + αk) + Bi ,

with
|Bi | ⩽ γn−i+1(up + up+r ) − γn−i+1(up)

and γm(x) = (1 + x)m − 1

El-Mehdi EL ARAR RAIM: Probabilistic error analysis of limited-precision stochastic rounding 6 / 14



Error analysis of algorithms with limited-precision SR

Theorem 2.

For y =
∑n

i=1 aibi and 0 < λ < 1, the quantity SRp,r (y) satisfies

|SRp,r (y) − y |
|y |

⩽ κ(a ◦ b)
(√

upγ2n(up)
√

ln(2/λ) + γn(up + up+r ) − γn(up)
)

= κ(a ◦ b)
(√

2n
√

ln(2/λ)up + nup+r

)
+ O(∥(up, up+r )∥2)

with probability at least 1 − λ.

It can be applied to all previous algorithms studied with SR
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Error analysis of algorithms with limited-precision SR

∏n
k=i(1 + δk) =

∏n
k=i(1 + αk) + Bi

Martingale |Bi | ⩽ γn−i+1(up + up+r ) − γn−i+1(up)

O(
√

nup) O(nup+r )

O(
√

nup + nup+r )
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Rule of thumb

Lemma 3.
Theorem 2 leads to

O(
√

nup + nup+r )

we want √
nup > nup+r

we thus have this good rule of thumb

r ⩾ ⌈(log2 n)/2⌉

El-Mehdi EL ARAR RAIM: Probabilistic error analysis of limited-precision stochastic rounding 9 / 14



Numerical experiments: Rosenbrock function

The Rosenbrock function is a non-convex function defined by

f (x1, x2) = (1 − x1)2 + 100(x2 − x2
1 )2

with a global minimum of 0, occurring at x⋆ = (1, 1).

The gradient descent:
xk+1 = xk − tk∇f (xk)
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Numerical experiments: Rosenbrock function

0 2,000 4,00010−3

10−2

10−1

100

k

|f
(x

k)
−

f(
x⋆

)|

x0 = (0, 0)

0 2,000 4,00010−3

10−2

10−1

100

k

x0 = (0.5, 0.5)

binary64 RN binary16 RN SR11,3 SR11,6
SR11,7 SR11,8 SR11,10

Figure. Convergence profiles for 6,000 iterations of gradient descent on the Rosenbrock
function. For both experiments, we average each SR11,r error over 500 different runs, and the
learning rate is tk = 0.001.

⌈log2(6,000)/2⌉ = 7
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Parameter update in deep neural network training
Focus:
Training a ResNet321 model on the CIFAR-10 dataset

Training Setup:
Hyperparameters:

▶ Batch Size: 128, Momentum: µ = 0.9
▶ Total Training: 64,000 iterations (200 epochs)
▶ Learning Rate: tk = 0.1, reduced by 10 at 32,000 and 48,000 iterations

Numerical Precision:
Arithmetic: bfloat16 (p = 8)
Update Rule:

vk+1 = ◦(µvk + gk),
xk+1 = ◦(xk − tkvk+1)

Components:
▶ vk : Velocity vector
▶ gk : Gradient of the loss function

1Deep Residual Learning for Image Recognition
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Parameter update in deep neural network training
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Figure. In the baseline configuration,binary32 arithmetic with RN is used for computing, and
the same format is used for storage. For the low-precision configurations, parameters are stored
and updated using bfloat16 arithmetic with either RN or SRp,r .

⌈log2(64,000)/2⌉ = 8
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Conclusion

SRp SRp,r

Unbiased ✓

Mean independence ✓

Probabilistic bound O(
√

nup) O(
√

nup + nup+r )

Rule of thumb r ⩾ ⌈(log2 n)/2⌉

Table. Classic stochastic rounding versus limited-precision stochastic rounding

Preprint submitted for publication: https://arxiv.org/abs/2408.03069

Probabilistic error analysis of limited-precision stochastic rounding
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Numerical experiments: Recursive summation
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Figure. The recursive summation of n floating-point numbers drawn from a uniform
distribution between 0 and 1. For each value of n, the reported relative error for SR11,r is the
average value over 500 runs.

⌈log2(6,000)/2⌉ = 7
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