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Project context and core goal

Context : ANR JCJC PADOC

m PADOC: Performances- and Accuracy-aware Data format Optimization in
numerical Codes

Motivation : Development of tools to optimize data formats in numerical computation
applications

m To improve their performance, by making better use of modern architectures,

m Without degrading the accuracy of their results.

Goal : A dynamic auto-tuning tool, targeting iterative routines
m Reduce the precision of certain instructions at the iteration level,
m To the detriment of an increase of the time of tuning process.
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Motivation and key achievements

@ Various floating-point formats exist = different level of accuracy

> |EEE 754-2019 defines four formats: binary{16, 32, 64, 128}
> non IEEE formats: BFloat16, Posit, ...

© Floating-point arithmetic is non-intuitive

> discrete and finite set of values — 0.1 not exactly representable
> loss of arithmetic properties — a+ (b+c¢) # (a+b) +¢

m Over-sizing of the computation means — higher precision by default

m Precision tuning: technique to improve performance of numerical applications

A Most existing tools do not consider iterative nature of programs A

m Achievements:
RAIM 2023

* Build a dynamic auto-tuning tool that targets instructions in iterative routines
based on loop transformation + fp2mp + delta-debugging
RAIM 2024
* Automate the transformations proposed by our tool DD-FP2MP
* Evaluate the speedup delivered in matrix multiplication on SIMD architecture

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication



.
Outline of the talk
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4. Conclusion and perspectives
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Outline of the talk

1. Auto-tuning approach for iterative routines
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Auto-tuning approach for iterative routines

Main flow of dynamic tools

= Most dynamic tools use a trial-and-error strategy

1. explore a set of possible transformations (configurations)
2. evaluate the impact of each transformation (eg. accuracy)

configuration
evaluation

constraint

maximum subset of

configurations -
transformations
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Auto-tuning approach for iterative routines

Main flow of dynamic tools

= Most dynamic tools use a trial-and-error strategy

1. explore a set of possible transformations (configurations)
2. evaluate the impact of each transformation (eg. accuracy)

configuration
evaluation

constraint

maximum subset of

configurations -
transformations

How to adapt this process to the tuning of iterative programs?
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Outline of our project

m Originality of the proposed approach

> change combinatorics by targeting instructions in loop bodies
> use compilation techniques on loop: loop splitting and unrolling

m Main steps

> loop transformation (splitting, unrolling)
> configuration evaluation — fp2mp
> building of maximum subset of transformations — delta-debugging

DD + fp2mp

constraint

loo ) . i
P . configurations maximum sut?set of
transformation transformations

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication



Outline of the talk

2. Analysis of performances in SIMD architectures
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SIMD paradigm
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How can we make good use of this to improve our auto-tuning process?
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Analysis of performances in SIMD architectures

Matrix multiplication vectorisation

Our matrix multiplication ¢ code Vectorised matrix multiplication pseudocode

for(int k = 0; k <= n—1; k += 1) { for(int k = 0; k <= n—=1; k += 1)
for(int 1 = 0; 1 <= n-1; 1 += 1) { for(int 1 = 0; 1 <= n-1; 1 += 1) {
for(int j = 0; j <= n—1 =1 for(int j = 0; j <= n=1; j += 4)
) C[i103] += A[i][k] = B[k][]]; CLi1[3...3+3] += A[i1[k] = B[k][]...J+3];
} }
Vectorisation

Which loop should we split?

Performance on SIMD architectures of auto-tuned programs for matrix multiplication
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Analysis of performances in SIMD architectures

Vectorised matrix multiplication splitting

binary64
dot-product

ZS

+

binary32
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splitting over i
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Analysis of performances in SIMD architectures

Vectorised matrix multiplication splitting

binary64
dot-product
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Analysis of performances in SIMD architectures

Expected speedup on loop-splitting for size-256 matrix
multiplication

—— |oop over i

—— loop over j
151 P J
—— loop over k

# 904
105 -
120 -

iterations i
m Splitting Strategy

> Split each loop (over i, j, and k) into two subloops
> Apply binary64 to binary32 transformations on the first subloop
> Vary the end index of the first subloop from 1 to 255 (step of 5)
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Analysis of performances in SIMD architectures

New workflow at C level

input C +
program fp2mp

constraint]
list of
transformations

m LLVM IR level splitting
> Dependent on the compiler being
used
> gives hints to be applicated by the
user
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Analysis of performances in SIMD architectures

New workflow at C level

input C
program ----|dd-fom

! transformations
1

J Cprogram

splitter

output auto-tuned

C program
m LLVM IR level splitting = New approach
> Dependent on the compiler being > Introduced a new loop splitting tool at the C level
used > Based on Python, applicable to any iterative program
> gives hints to be applicated by the > gives back an optimised C program
>

user the output C program can be compiled with any
compiler and executed
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C level splitting

void matmul (double *A, double *B, double *C,
int n) {
int i, 3, k;
#pragma chng MOp split_optimization (enable)
// SPLIT_FOR [indvar=k, start=0, end=n-1, step=1]
// REPLACEMENT:

// A > A_Db32 > heap (n*n)
// B > B_b32 > heap (n*n)
// C > C_b32 > heap (n*n)
// INITIALISATION:
// for(i = 0; i <= n-1; 1 += 1) {
// for(j = 0; j <=n-1; j +=1) {
// A_b32[i*n¥j] = A[i*n+3];
/] B_b32[i*n+3j] = B[i*n+jl;
// }
/)
// PREFIX
// for(i = 0; i <= n-1; i += 1) {
// for(j = 0; j <= n-1; j += 1)
% C_b32[i*n+j] = Cli*n+3l;
}
// SUFFIX:
// for(i = 0; i <= n-1; i += 1) {
// for(j = 0; j <= n-1; j += 1)
;? Cli*n+j] = C_b32[i*n+3l;
}
for (k = 0; k <= n-1; k += 1) {
for (1 = 0; 1 <= n-1; 1 += 1) {
for (j = 0; j <= n=1; j += 1)
) C[i*n+j] += A[i*n+k]*B[k*n+7j]
}
// END SPLIT_FOR

Analysis of performances in SIMD architectures

SPLIT_FOR Surrounds loops
to be split based on induction
variable, start/end values,
step.

REPLACEMENT Manages
binary64 to binary32 variable
replacement.
INITIALISATION Inserts
initialization for lower
precision variables before
loops.

PREFIX / SUFIX Handles
cast moving before and after
subloops.
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Analysis of performances in SIMD architectures

Generated splitted C code [/, oo
float »A_b32, *B_b32, *C_b32;
. . // ALLOCATION
m Example Configuration: // ... initialisation
X for(i = 0; 1 <= n—-1; 1 += 1) {
> Python list [[0, 63, Truel, [64, 255, for(j = 0; <= n—=1; § += 1) {
A_Db32[i*n+j] = A[i*n+j];
False]] B_b32[i*n+j] = B[i*n+j];
> Splits the loop into: ) }
* Subloop 1: lteration 0 to 63 using binary32 // T A = 0]
° Subloop 2: Iteration 64 to 255 using for(i = 0;pi < n-1; i += 1) {
binary64 for(j = 0; j <=n=1; j += 1)
) C_b32[i*n+j] = C[i*n+]];
for (k = 0; k <= 63; k += 1) {
m Generated C Program S e RS
> Includes declaration, allocation, and g B RS E i Tenakgen b2 (kene3
i isi }
dea}llocatlon of lower precision Lor(i= 05 i <= not: i 4= 1)
variables foéfj = Q]; j E=bI3]2_[1'; j -{-T 1)
. . i*n = 1*n ;
> Cast moving code inserted only for } e -
subloops with reduced precision | £/ (i 4. o-'al ¢ o 1)
> Consecutive subloops of the same for (1 =0; i <=n-1; 1 1 1
. for (j=0;j<_n—1 += 1)
precision are collapsed ; Cli*n+j] += A[l*n+k]*B[k*n+j]
}/ END AUTO-TUNED LOOP
// DEALLOCATION
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Outline of the talk

3. Experimental results
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Experimental Setup

Matrix Initialization H Auto-tuning and C generation H SIMD Execution H Speedup Calculation

m Matrix generation factors: m Threshold
> size [|C_Bmix — C_B64||co
> condition number [1C_B64|l0o

m Available formats: m Speedup
> Binary64 > RDTSC
> Binary32

m Splitting factor
> number of subloops created resulting of the splitting
= Number of changes
> number of switches between data formats, adding performance casts
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Number of allowed precision changes impact

® matrix size = 256
m splitting factor = 64

© o © w 1 Lo b b

allowed changes threshold € 213 2 2 < 2 2 <

me1 # changes 0 1 1 1 1 1 1 0
#iterationsinb32 | 0 | 4 8 8 48 | 108 | 124 | 256

I # changes 0 2 2 2 2 2 2 0
#iterations inb32 | 0 8 | 12 | 12 | 80 | 172 | 208 | 256

# changes 0 2 2 4 6 8 10 0

m=oo

#iterationsinb32 | 0 | 8 | 12 | 16 | 96 | 196 | 220 | 256
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Condition number impact

256

m splitting factor = 64
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Outline of the talk

4. Conclusion and perspectives
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Conclusion and perspectives

Contribution
= Dynamic tool to tune the precision of certain instructions in iterative routines
> target instructions of loop bodies
> based on loop transformation + fp2mp + delta-debugging
m Automate the transformations proposed by the tool

m Demonstrated tool effectiveness in matrix multiplication, showing significant
performance improvements.

Future works
m Study how this approach scales — loop size, nested loops
m Gain prediction
m Investigate other loop transformations
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Thank You for Your Attention!
@

Do you have any questions?
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Gain prediction
Ongoing

/2
?
3T4+P<T

/2
T/4

I

Initial loop optimised loop

How can we predict the speedup in advance so that we can avoid executing
configurations that are likely to yield no improvements?
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Static loop transformation

m Objective: increase the number of possible transformations
> leverage the LLVM capabilities of transforming programs

for (int i=1; 1<=1000; i++)
s_b64 = s_b64 + 0.01;

unrolling splitting
for (int i=1; 1i<=1000; i+=2) { for (int 1i=1; 1i<=500; i++)
s_b6d = s b64 + 0.01; s_b64d = s_b6d + 0.01;
sfb64 = s_bo6d + 0.01; for (int 1=501; 1<=1000; i++)
} s_b64d = s_be6d + 0.01;

> do not modify the semantics of the program
> allow to detect two different patterns of transformations
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Static loop transformation

m Objective: increase the number of possible transformations
> leverage the LLVM capabilities of transforming programs

for (int i=1;

i++)

s_bb64d s_b64 + 0.01;
unrolling splitting
for (int i=1; i<=1000; i+=2) { for (int i=1; i<=500; i++)
s_b64d = s_b6d4 + 0.01; s_b64d = s_b6d + 0.01;
s_b64d = s_b6d4 + 0.01; for (int 1=501; 1<=1000; i++)
} s_b64d = s_be6d + 0.01;

> do not modify the semantics of the program
> allow to detect two different patterns of transformations

A Approach antagonistic to existing ones
> current trend: reduce the combinatorics to speedup the process
> our approach: increase the combinatorics — © increase the tuning process time
© improve the quality of the tuning

Y. Fakhreddine and G. Revy
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NS
Evaluate the impact of transformations

m Objective: check if the constraint is still satisfied
m Rely on fp2mp: LLVM instrumentation tool

> duplicate floating-point instructions into their MPFR equivalent instructions
> and allow to compute the result using a desired precision

double s_b64 = 0.;
//

double s_bo64 = 0.;

I 1
| for (int i=1; i<=1000; i++) | mpfr_t s_mpfr, C, S;
| s_b64 = s_b64 + 0.01; | mpfr_init2 (s_mpfr, 24);
‘prlntf("s_b64 = %.201f", s_b64); ‘ mpfr_init2(C, 53);
mpfr_lnitZ(S 53);

| // |1s_b64 - s_mpfr|/|s_b64| < le-6 2 | mpfr_set_d(C, 0.01, MPFR_RNDN);
| check_reverse_rel_error (s_b64, le-6); |
L I | for (int i=1; i<=1000; i++) {

l 77b64 = s_b64d + 0.01;

S mpfr_set (S, s_mpfr, MPFR_RNDN);

mpfr_add(s_mpfr, S, C, MPFR_RNDN);
}
printf("s_b64 = %$.201f", s_b64);

// |s_b64 - s_mpfr|/|s_bb6d| < le-6 ?

check_reverse_rel_error (s_b64, s_mpfr,
le-6);

mpfr_clears (s_mpfr, C, S, NULL); '
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NS
Evaluate the impact of transformations

m Objective: check if the constraint is still satisfied

m Rely on fp2mp: LLVM instrumentation tool

> duplicate floating-point instructions into their MPFR equivalent instructions
> and allow to compute the result using a desired precision

double s_bo64 = 0.;

or (i
s_b6d = s_
rlntf("s_b6

nt i=1; i
b64
4 =

< le-6 ?

b
// |s_b64 - s_mpfr|/|s_b64]|
@ le-6);

heck_reverse_rel_error (s_bé64,

I
| £
\
\
\
L

1
\
\
\
\
1

l

m Interest
1. Apply transformations = modify
MPFR initialisation precision
2. Provide means to estimate
errors due to transformations

double s_b64 = 0.;
//

mpfr_t s_mpfr,
mpfr_init2 (s_m
mpfr_init2 (C
mpfr_lnitZ(S
mpfr_set_d(C

S;

mpfr_set (S, s_mpfr, MPFR_RNDN);
mpfr_add (s_mpfr, S, C, MPFR_RNDN);

}

printf("s_b64 = %$.201f", s_b64);

// |s_b64 - s_mpfr|/|s_b6d| < le-6 ?

check_reverse_rel_error (s_b64, s_mpfr,

le-6);

mpfr_clears (s_mpfr, C, S, NULL);

Y. Fakhreddine and G. Revy

Performance on SIMD architectures of auto-tuned programs for matrix multiplication



BN
Delta-Debugging algorithm

m Objective: isolate most relevant transformations
> widely used in auto-tuning tools
> ddmax: find a locally maximal set of changes — the contraint remains satisfied

l ] | [l | not tested

m For each instruction — a list of possible precision (e.g. [0b32, b16])
> apply delta-debugging several times
> find the lowest precision for each instruction
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