RAIM 2024
Perpignan, November 4-6

Performance on SIMD architectures of
auto-tuned programs for matrix multiplication

Youssef Fakhreddine and Guillaume Revy

Univ Perpignan Via Domitia, DALI, Perpignan, France
LIRMM, Univ Montpellier, CNRS (UMR 5506), Montpellier, France

4

Université
Perpignan
Via Domitia

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

BN
Project context and core goal

Context : ANR JCJC PADOC

m PADOC: Performances- and Accuracy-aware Data format Optimization in
numerical Codes

Motivation : Development of tools to optimize data formats in numerical computation
applications

m To improve their performance, by making better use of modern architectures,

m Without degrading the accuracy of their results.

Goal : A dynamic auto-tuning tool, targeting iterative routines
m Reduce the precision of certain instructions at the iteration level,
m To the detriment of an increase of the time of tuning process.

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Motivation and key achievements

@ Various floating-point formats exist = different level of accuracy

> |EEE 754-2019 defines four formats: binary{16, 32, 64, 128}
> non IEEE formats: BFloat16, Posit, ...

© Floating-point arithmetic is non-intuitive

> discrete and finite set of values — 0.1 not exactly representable
> loss of arithmetic properties — a+ (b+c¢) # (a+b) +¢

m Over-sizing of the computation means — higher precision by default

m Precision tuning: technique to improve performance of numerical applications

A Most existing tools do not consider iterative nature of programs A

m Achievements:
RAIM 2023

* Build a dynamic auto-tuning tool that targets instructions in iterative routines
based on loop transformation + fp2mp + delta-debugging
RAIM 2024
* Automate the transformations proposed by our tool DD-FP2MP
* Evaluate the speedup delivered in matrix multiplication on SIMD architecture

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

.
Outline of the talk

1. Auto-tuning approach for iterative routines

2. Analysis of performances in SIMD architectures

3. Experimental results

4. Conclusion and perspectives

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Outline of the talk

1. Auto-tuning approach for iterative routines

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Auto-tuning approach for iterative routines

Main flow of dynamic tools

= Most dynamic tools use a trial-and-error strategy

1. explore a set of possible transformations (configurations)
2. evaluate the impact of each transformation (eg. accuracy)

configuration
evaluation

constraint

maximum subset of

configurations -
transformations

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Auto-tuning approach for iterative routines

Main flow of dynamic tools

= Most dynamic tools use a trial-and-error strategy

1. explore a set of possible transformations (configurations)
2. evaluate the impact of each transformation (eg. accuracy)

configuration
evaluation

constraint

maximum subset of

configurations -
transformations

How to adapt this process to the tuning of iterative programs?

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Outline of our project

m Originality of the proposed approach

> change combinatorics by targeting instructions in loop bodies
> use compilation techniques on loop: loop splitting and unrolling

m Main steps

> loop transformation (splitting, unrolling)
> configuration evaluation — fp2mp
> building of maximum subset of transformations — delta-debugging

DD + fp2mp

constraint

loo) . i
P . configurations maximum sut?set of
transformation transformations

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Outline of the talk

2. Analysis of performances in SIMD architectures

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

SIMD paradigm

o o o % siMD »
I o A I A N e 2 N N I
j ~ _ _ AVX2 _
(I I A L [[T [|
LITTTITIT]
lowering P
[] double precision — [T TTITITT1T1]1
instructions precision ~
E] simple precision l I I I I I I I I
instructions

How can we make good use of this to improve our auto-tuning process?

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Analysis of performances in SIMD architectures

Matrix multiplication vectorisation

Our matrix multiplication ¢ code Vectorised matrix multiplication pseudocode

for(int k = 0; k <= n—1; k += 1) { for(int k = 0; k <= n—=1; k += 1)
for(int 1 = 0; 1 <= n-1; 1 += 1) { for(int 1 = 0; 1 <= n-1; 1 += 1) {
for(int j = 0; j <= n—1 =1 for(int j = 0; j <= n=1; j += 4)
) C[i103] += A[i][k] = B[k][]]; CLi1[3...3+3] += A[i1[k] = B[k][]...J+3];
} }
Vectorisation

Which loop should we split?

Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Y. Fakhreddine and G. Revy

Analysis of performances in SIMD architectures

Vectorised matrix multiplication splitting

binary64
dot-product

ZS

+

binary32

Eiiii
FEFFH
.

dot-product

-
UL
FEHFH

]

splitting over i

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Analysis of performances in SIMD architectures

Vectorised matrix multiplication splitting

binary64
dot-product

ZS

4
binary32
dot-product

asatiil
FHHHH
.

i

splitting over i

mixed precision

dot-product

h-
i

splitting over k

H

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

11/23

Analysis of performances in SIMD architectures

Expected speedup on loop-splitting for size-256 matrix
multiplication

—— |oop over i

—— loop over j
151 P J
—— loop over k

904
105 -
120 -

iterations i
m Splitting Strategy

> Split each loop (over i, j, and k) into two subloops
> Apply binary64 to binary32 transformations on the first subloop
> Vary the end index of the first subloop from 1 to 255 (step of 5)

Y. Fakhreddine and G. Revy

Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Analysis of performances in SIMD architectures

New workflow at C level

input C +
program fp2mp

constraint]
list of
transformations

m LLVM IR level splitting
> Dependent on the compiler being
used
> gives hints to be applicated by the
user

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Analysis of performances in SIMD architectures

New workflow at C level

input C
program ----|dd-fom

! transformations
1

J Cprogram

splitter

output auto-tuned

C program
m LLVM IR level splitting = New approach
> Dependent on the compiler being > Introduced a new loop splitting tool at the C level
used > Based on Python, applicable to any iterative program
> gives hints to be applicated by the > gives back an optimised C program
>

user the output C program can be compiled with any
compiler and executed

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

C level splitting

void matmul (double *A, double *B, double *C,
int n) {
int i, 3, k;
#pragma chng MOp split_optimization (enable)
// SPLIT_FOR [indvar=k, start=0, end=n-1, step=1]
// REPLACEMENT:

// A > A_Db32 > heap (n*n)
// B > B_b32 > heap (n*n)
// C > C_b32 > heap (n*n)
// INITIALISATION:
// for(i = 0; i <= n-1; 1 += 1) {
// for(j = 0; j <=n-1; j +=1) {
// A_b32[i*n¥j] = A[i*n+3];
/] B_b32[i*n+3j] = B[i*n+jl;
// }
/)
// PREFIX
// for(i = 0; i <= n-1; i += 1) {
// for(j = 0; j <= n-1; j += 1)
% C_b32[i*n+j] = Cli*n+3l;
}
// SUFFIX:
// for(i = 0; i <= n-1; i += 1) {
// for(j = 0; j <= n-1; j += 1)
;? Cli*n+j] = C_b32[i*n+3l;
}
for (k = 0; k <= n-1; k += 1) {
for (1 = 0; 1 <= n-1; 1 += 1) {
for (j = 0; j <= n=1; j += 1)
) C[i*n+j] += A[i*n+k]*B[k*n+7j]
}
// END SPLIT_FOR

Analysis of performances in SIMD architectures

SPLIT_FOR Surrounds loops
to be split based on induction
variable, start/end values,
step.

REPLACEMENT Manages
binary64 to binary32 variable
replacement.
INITIALISATION Inserts
initialization for lower
precision variables before
loops.

PREFIX / SUFIX Handles
cast moving before and after
subloops.

Y. Fakhreddine and G. Revy

Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Analysis of performances in SIMD architectures

Generated splitted C code [/, oo
float »A_b32, *B_b32, *C_b32;
. . // ALLOCATION
m Example Configuration: // ... initialisation
X for(i = 0; 1 <= n—-1; 1 += 1) {
> Python list [[0, 63, Truel, [64, 255, for(j = 0; <= n—=1; § += 1) {
A_Db32[i*n+j] = A[i*n+j];
False]] B_b32[i*n+j] = B[i*n+j];
> Splits the loop into:) }
* Subloop 1: lteration 0 to 63 using binary32 // T A = 0]
° Subloop 2: Iteration 64 to 255 using for(i = 0;pi < n-1; i += 1) {
binary64 for(j = 0; j <=n=1; j += 1)
) C_b32[i*n+j] = C[i*n+]];
for (k = 0; k <= 63; k += 1) {
m Generated C Program S e RS
> Includes declaration, allocation, and g B RS E i Tenakgen b2 (kene3
i isi }
dea}llocatlon of lower precision Lor(i= 05 i <= not: i 4= 1)
variables foéfj = Q]; j E=bI3]2_[1'; j -{-T 1)
. . i*n = 1*n ;
> Cast moving code inserted only for } e -
subloops with reduced precision | £/ (i 4. o-'al ¢ o 1)
> Consecutive subloops of the same for (1 =0; i <=n-1; 1 1 1
. for (j=0;j<_n—1 += 1)
precision are collapsed ; Cli*n+j] += A[l*n+k]*B[k*n+j]
}/ END AUTO-TUNED LOOP
// DEALLOCATION

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Outline of the talk

3. Experimental results

erformance on SIMD archite ed programs for matrix multiplicatio

Experimental Setup

Matrix Initialization H Auto-tuning and C generation H SIMD Execution H Speedup Calculation

m Matrix generation factors: m Threshold
> size [|C_Bmix — C_B64||co
> condition number [1C_B64|l0o

m Available formats: m Speedup
> Binary64 > RDTSC
> Binary32

m Splitting factor
> number of subloops created resulting of the splitting
= Number of changes
> number of switches between data formats, adding performance casts

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

128

96
4

32

s
rv-at
r a1
rS°6
rses
rSaL
rs29
rSsos
rSsov
[S9€
rsac
r ST
r9-°6
r9-°8
9oL
ro-°9
r9-9s
r 93y
r9-9€
99t
[99T

threshold

splitting factor = 128

B

-~ avx512

—0— avx2

e |
dnpaads

N 9 ® © ¢ & o
N -

0.8
0.6

suopesay

© <
3 ©

2
3
]
g
=
E
X
3
€
5
«
£
)
o
5
5
3
g
5
£
5
3
5
?
@
2
]
2
FS
S
5
[=]
=
[z
=
&
3
8

128
32
0

=128

splitting factor = 32

and G. Revy

ix size

H matr
& avx2 |

Speedup and precision patterns 1/2

2.2
2.0

® © % N o
[R 1
dnpaads

0.8
0.6

s
rv-at
r a1
rS°6
rses
rSaL
rs29
rSsos
rSsov
[S9€
rsac
r ST
r9-°6
r9-°8
9oL
ro-°9
r9-9s
r 93y
r9-9€
99t
[99T

threshold

splitting factor = 128

-~ avx512

—0— avx2

T L T
e |
dnpaads

2.2
2.0
1.8

® o
s o

suopesay

2
3
]
g
=
E
X
3
€
5
«
£
)
o
5
5
3
g
5
£
5
3
5
?
@
2
]
2
FS
S
5
[=]
=
[z
=
&
3
8

256
224

=256

ix size
splitting factor = 32
and G. Revy

-~ avx512

—o— avx2

H matr

Speedup and precision patterns 2/2

2.2
2.0

® © % N o
[R 1
dnpaads

0.8
0.6

Number of allowed precision changes impact

® matrix size = 256
m splitting factor = 64

© o © w 1 Lo b b

allowed changes threshold € 213 2 2 < 2 2 <

me1 # changes 0 1 1 1 1 1 1 0
#iterationsinb32 | 0 | 4 8 8 48 | 108 | 124 | 256

I # changes 0 2 2 2 2 2 2 0
#iterations inb32 | 0 8 | 12 | 12 | 80 | 172 | 208 | 256

changes 0 2 2 4 6 8 10 0

m=oo

#iterationsinb32 | 0 | 8 | 12 | 16 | 96 | 196 | 220 | 256

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Condition number impact

256

m splitting factor = 64

ix size

m matr

© <
BN
NN

o~
o
3

suoljesdy

o
©
-

©
~
—

©
3

<
©

N
B

o

:

~- avx51.

s
rv-at
r o1
rS°6
rsos
rSaL
rs29
rsos
rSov
[S9€
rsac
rSor
r9-°6
r9-°8
9oL
r9-°9
r9-9s
r 93y
r9-9¢
99t
[99T

2.2

256

—— avx2
2.0

224

1.8

192

©
-

T N
-
dnpaads

suonesay

160

©
3

64

®
=}

32

©
5]

—8— avx2

g

avx51

2.2

20l

1.8

©
-

bt
-

o
-

dnpaads

0.8

0.6

threshold

1000

K=

x =100

2
3
]
g
=
E
X
3
€
5
«
£
5
o
5
5
3
g
5
£
5
3
5
o
@
2
]
2
FS
S
s
[=]
=
[z
=
&
3
8

and G. Revy

Outline of the talk

4. Conclusion and perspectives

erformance on SIMD archite ed programs for matrix multiplicatio

Conclusion and perspectives

Contribution
= Dynamic tool to tune the precision of certain instructions in iterative routines
> target instructions of loop bodies
> based on loop transformation + fp2mp + delta-debugging
m Automate the transformations proposed by the tool

m Demonstrated tool effectiveness in matrix multiplication, showing significant
performance improvements.

Future works
m Study how this approach scales — loop size, nested loops
m Gain prediction
m Investigate other loop transformations

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Thank You for Your Attention!
@

Do you have any questions?

Y. Fakhreddine and G. Revy

Gain prediction
Ongoing

/2
?
3T4+P<T

/2
T/4

I

Initial loop optimised loop

How can we predict the speedup in advance so that we can avoid executing
configurations that are likely to yield no improvements?

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Static loop transformation

m Objective: increase the number of possible transformations
> leverage the LLVM capabilities of transforming programs

for (int i=1; 1<=1000; i++)
s_b64 = s_b64 + 0.01;

unrolling splitting
for (int i=1; 1i<=1000; i+=2) { for (int 1i=1; 1i<=500; i++)
s_b6d = s b64 + 0.01; s_b64d = s_b6d + 0.01;
sfb64 = s_bo6d + 0.01; for (int 1=501; 1<=1000; i++)
} s_b64d = s_be6d + 0.01;

> do not modify the semantics of the program
> allow to detect two different patterns of transformations

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

Static loop transformation

m Objective: increase the number of possible transformations
> leverage the LLVM capabilities of transforming programs

for (int i=1;

i++)

s_bb64d s_b64 + 0.01;
unrolling splitting
for (int i=1; i<=1000; i+=2) { for (int i=1; i<=500; i++)
s_b64d = s_b6d4 + 0.01; s_b64d = s_b6d + 0.01;
s_b64d = s_b6d4 + 0.01; for (int 1=501; 1<=1000; i++)
} s_b64d = s_be6d + 0.01;

> do not modify the semantics of the program
> allow to detect two different patterns of transformations

A Approach antagonistic to existing ones
> current trend: reduce the combinatorics to speedup the process
> our approach: increase the combinatorics — © increase the tuning process time
© improve the quality of the tuning

Y. Fakhreddine and G. Revy

Performance on SIMD architectures of auto-tuned programs for matrix multiplication

NS
Evaluate the impact of transformations

m Objective: check if the constraint is still satisfied
m Rely on fp2mp: LLVM instrumentation tool

> duplicate floating-point instructions into their MPFR equivalent instructions
> and allow to compute the result using a desired precision

double s_b64 = 0.;
//

double s_bo64 = 0.;

I 1
| for (int i=1; i<=1000; i++) | mpfr_t s_mpfr, C, S;
| s_b64 = s_b64 + 0.01; | mpfr_init2 (s_mpfr, 24);
‘prlntf("s_b64 = %.201f", s_b64); ‘ mpfr_init2(C, 53);
mpfr_lnitZ(S 53);

| // |1s_b64 - s_mpfr|/|s_b64| < le-6 2 | mpfr_set_d(C, 0.01, MPFR_RNDN);
| check_reverse_rel_error (s_b64, le-6); |
L I | for (int i=1; i<=1000; i++) {

l 77b64 = s_b64d + 0.01;

S mpfr_set (S, s_mpfr, MPFR_RNDN);

mpfr_add(s_mpfr, S, C, MPFR_RNDN);
}
printf("s_b64 = %$.201f", s_b64);

// |s_b64 - s_mpfr|/|s_bb6d| < le-6 ?

check_reverse_rel_error (s_b64, s_mpfr,
le-6);

mpfr_clears (s_mpfr, C, S, NULL); '

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

NS
Evaluate the impact of transformations

m Objective: check if the constraint is still satisfied

m Rely on fp2mp: LLVM instrumentation tool

> duplicate floating-point instructions into their MPFR equivalent instructions
> and allow to compute the result using a desired precision

double s_bo64 = 0.;

or (i
s_b6d = s_
rlntf("s_b6

nt i=1; i
b64
4 =

< le-6 ?

b
// |s_b64 - s_mpfr|/|s_b64]|
@ le-6);

heck_reverse_rel_error (s_bé64,

I
| £
\
\
\
L

1
\
\
\
\
1

l

m Interest
1. Apply transformations = modify
MPFR initialisation precision
2. Provide means to estimate
errors due to transformations

double s_b64 = 0.;
//

mpfr_t s_mpfr,
mpfr_init2 (s_m
mpfr_init2 (C
mpfr_lnitZ(S
mpfr_set_d(C

S;

mpfr_set (S, s_mpfr, MPFR_RNDN);
mpfr_add (s_mpfr, S, C, MPFR_RNDN);

}

printf("s_b64 = %$.201f", s_b64);

// |s_b64 - s_mpfr|/|s_b6d| < le-6 ?

check_reverse_rel_error (s_b64, s_mpfr,

le-6);

mpfr_clears (s_mpfr, C, S, NULL);

Y. Fakhreddine and G. Revy

Performance on SIMD architectures of auto-tuned programs for matrix multiplication

BN
Delta-Debugging algorithm

m Objective: isolate most relevant transformations
> widely used in auto-tuning tools
> ddmax: find a locally maximal set of changes — the contraint remains satisfied

l] | [l | not tested

m For each instruction — a list of possible precision (e.g. [0b32, b16])
> apply delta-debugging several times
> find the lowest precision for each instruction

Y. Fakhreddine and G. Revy Performance on SIMD architectures of auto-tuned programs for matrix multiplication

	ARITH2024
	Auto-tuning approach for iterative routines
	Analysis of performances in SIMD architectures
	Experimental results
	Conclusion and perspectives

	Appendix

